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ABSTRACT

This tnesis represents an initial attempt to demonstrate aspect independent

target identification of complex radar targets using annihilation filters based on the

natural resonances of the targets. The Cadzow-Solomon signal processing algorithm

is tested to determine its suitability for the task of extracting the poles from complex

targets to a degree of accuracy required for successful implementation of an

annihilation filtering target identification system. This testing was conducted through

the use of noise polluted synthetic data as well as measured transient scattering data

from thin-wire and silver coated scale model aircraft targets. The testing revealed

that the Cadzow-Solomon algorithm can return pole clusters at false pole locations

when processing the scattered returns from complex targets. Properties of

annihilation filters which may affect their ability to discriminate complex targets are

examined.
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I. INTRODUCTION

Radar has long been recognized as an effective tool for determining such

information as a target's location in range and angle. In general however, radar

systems are not capable of identifying the type of target being illuminated. In some

situw ;ons this information may be as important as the target's location. A radar

target scattering an incident electromagnetic wave can be considered to be a single

input, single output, linear time invariant system. Because of this, the target can be

described by a transfer function with poles and zeros. In his work at the Air Force

Weapons Laboratory, Baum [1] showed through the development of the singularity

expansion method (SEM) that these identifiable poles are determined by the target's

geometry and composition. According to Moffatt and Mains [2], these poles are

independent of the angle of incidence and polarization of the exciting waveform.

Morgan [3] has shown theoretically that, after the last driven response is received

from the target, its scattering response consists of a weighted superposition of natural

resonances, each of whclh is independent of the incident excitation.

The use cf these resonances for radar target identification was first proposed

in 1974 by Moffatt and Mains [2]. Early attempts at demonstrating the feasibility of

such a system were disappointing due to the high noise sensitivity of the signal

processing algorithms. Recently, several signal processing algorithms have been used



to locate poles in a target's noisy response to a degree of accuracy which could make

target identification with this technique viable [4]. The Cadzow-Solomon algorithm

in particular, seems well suited for this application. This thesis represents an initial

attempt to use radar returns taken from scale model aircraft in a scattering range to

develop a database of target pole locations. These pole locations were then used to

attempt to demonstrate the use of an annihilation filtering scheme for target

identification. During this work, it was discovered that the Cadzow-Solomon

algorithm may return pole clusters -t false pole locations. Possible reasons for this

are examined.

A. THE PROBLEM

Classifying radar targets based on their natural resonances requires the use of

several signal processing functions. The first step is to identify the poles of each

targtt class of interest. For simple targets such as spheres or thin wires, it may be

possibie to derive these poles analytically. However, for more complicated targets

such as aircraft, the poles will more likely need to be extracted from actual

measuremtnts of the target's response to incident electromagnetic excitation. This

information forms a database which will become the basis for target classification.

The second step in classifying a target of interest is to compare its poles with

those contained in the database and to classify the target baod on the closest match.

One possible method for accomplishing this would be to extrac, the resonances of the

target using the same signal processing techniques employed in the development of

2



the database and then to compare these poles directly against the database.

However, because the signal proceising algorithms for pole zxtraction tend to be

,omputationally intensive, the time required to extract an unknown target's poles may

cvceed that w hich would make the system useful. It is possible to perform the

database comparison without explicitly determining the target's poles. In the

continuous time domain, the K-pulse method of Kennaugh [5] makes this possible,

while in the discrete time domain the annihilation filter used by Dunnavin [6],

Morgan and Dunnavin [7] and Chen et. al. [8] is used. An annihilation filter is

an "all-zero" filter with its zeros located to correspond , the poles of an expected

target. Whena the response ot the corresponding target is applied to the filter, the

energy corresponding to the target's poles is canceled and the filter's output consists

only of energy due to the driven portion of the response and any noise present in the

svstem.

A system to classify radar targets by their natural resonances using these

techniques would require a separate annihilation filter corresponding to each target

classification of interest. In using the system, the response of a target of concern

would be fed to each of the filters concurrently. In its simplest form, the filter

exhibiting the lowest output energy would be selected as that corresponding to the

classification of the unknown target.

3



B. HISTORICAL BACKGROUND

The concept of radar target classification through the use of natural resonances

is based on assumptions about the nature of a target's return signal to a radar pulse.

In 1971, Baum [1] developed the SEM, wherein a target's impulse response induced

currents are considered to be the sum of natural modes. A pulse illuminating a

target induces currents on the target's surface. In the time domain these currents

occur in modes of the form, J (-)exp(snt), where s,, represents a natural resonance of

the target. These natural resonances occur in the left-hand portion of the s-plane.

Since the time domain currents are real, they must occur in complex conjugate pairs.

The natural resonances can be represented as

S, = an + jW,, (1)

where a, is the damping rate in Nepers/sec and w,, is the frequency in radians/sec.

The location of these poles in the s-plane is determined by the requirement to satisfy

the boundary conditions which, in turn, are determined by the physical properties of

the target including its shape, size, and composition.

Although an intinite number of these resonances exist in any object, only a finite

set of them will be measurably excited by an incident electromagnetic wave of finite

bandwidth. Because certain resonances are strongly associated with certain sections

of a target's structure, the aspect at which the target is illuminated will affect the

amplitude and phase at which each of these current modes are excited. However,

the frequcncy and damping rate of each mode is not determined by the aspect at
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which the target ii illuminated or at which it radiates with respect to the receiving

antenna. In 1974, Moffatt and Mains [2] first proposed that the extraction of these

resonances from a targct's response could be used for target identification. This

proposal built on earlier work by Kennaugh and Moffatt [9], who observed that a

target could be characterized by its impulse response which would include the

exponentially damped terms of the form discussed above.

Unfortunately, the scattered field response of a target cannot be represented

simply as a sum of complex exponentials occurring at the resonance frequencies.

Early attempts at target classification based on natural resonances were disappointing

not only due to the noise sensitivity of the signal processing algorithms, but also due

to the use of an incomplete signal model. The current induced on the surface of a

>ighly conducting target illuminated by an electromagnetic fiel. must satisfy the

magnetic field integral equation (MFIE) [1O]

J(Ft)=2ixH'(7,t)+ f fKQ" t)J(r't-I )ds (2)
SF. Cs,.

where J is the surface current density, n' is the outward unit vector normal to the

surface of the object, F-' is the incident magnetic field, and K is a Green's function

dyadic. The principal-value (PV) type integral excludes the point r = r '. The cross

product term represents the physical optics portion of the induced current while the

surface integral term represents the "feedback" currents to each point on the scatterer

due to the induced currents at all other points on the object. With/-I = 0 in (2), it
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is possible to represent the response as a sum of natural modes of the form

J(F)exp(st), where s,, has the form of (1). Figure 1 illustrates the relationships in

(2).

The scattering response of a target illuminated by a pulsed radar signal will

consist of an early time driven response, caused in part by induced currents driven

by Hi # 0, followed by a late-time natural mode response. The early time response

can be envisioned as the scattering of the target as the radar pulse is passing over it,

while the late time response is that due to the decaying currents present once the

pulse is no longer directly illuminating the target. As the pulse moves across the

target, the surface current consists of the physical optics term added to the Green's

function integral contribution Lom all points previously illuminated by the pulse.

Because of causality, there is no induced current at points on the scatterer ahead of

the incident wavefront. For a monostatic radar the transition from early to late time

will occur at At=T+2D/c seconds tjter the leading edge of the scattered pulse arrives

back at the radar antenna. Here T is the pulse duration, D is the target's dimension

along the direction of wave propagation, and c is the speed of light.

In the far-field, the back-scqrqered response of the target due to the surface

currents induced by the incident pulse takes the form

HS(-rl't) -4L rfifj(P I P /c)dS' (3)

6
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Figure 1. Transient Electromagnetic Scattering
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where ' is the unit vector in the direction of the plane wave's propagation. This

equation gives the value of the field at a point in the far-field by integrating the

current at each point on the target's surface. To find the back-scattered far-field,

substitute the currents given by (2) into (3):

H(-rc )  (-?Olt) = u(t. H,(-rpt)exp(st) (4)
n=-

The first term in (4) describes that portion of the field generated by the 2i3' xH-' term

in (2), the physical optics term. The second term represents the contribution of the

feedback currents in the Green's function integral to the back-scattered field. For

any particular point on the object, the infinite number of paths connecting it to all

other points on the object is the same as for any other point on the object. These

paths are unique to the geometry of the object and correspond to the paths taken by

currents as they feedback to the particular point. The Green's function kernel

accounts for this in (2). Thus, this term in (2), and the resultant field in (4) are

unique to the structure of the target.

Additional insight is provided by the singularity expansion method developed

by Baum [1]. SEM uses the singularities of the response in the complex frequency

(s) plane as a method for viewing a scatterer's response. Early attempts at target

identification using natural resonances employed a SEM "class 1" expansion as a

model for the target's scattering response. A "class 1" expansion in the singularity

8



expansion method describes the response as a sum of fixed weighted terms involving

the resonant frequencies. Morgan [3] has shown that this is an accurate model only

in the late time portion of the response. In the early time the response contains the

physical optics term and is further complicated by the fact that the surface area over

which the integration in (3) must be conducted is continually changing as the pulse

moves across the target. Thus the coefficients H,, in (4) are time varying. In the late

time portion of the response, after the pulse has passed completely over the object,

the surface integral in (3) must be conducted over the entire surface of the object,

and the coefficients in (4) are constant. A "class 2" form of the SEM expansion can

take into account the time varying coefficients. The early time response of a

scatterer is therefore composed of a physical optics term and a class 2 SEM

expansion.
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II. POLE EXTRACTION ALGORITHMS

This chapter begins with a brief discussion of several of the signal processing

algorithms which have been important in the history of radar target identification

using naturil resonances. It then continues with a more in-depth look at the

Kumaresa-i-Tufts and the Cadzow-Solomon algorithms.

A. EARLY METHODS

The first problem to be solved in radar target identification using natural

resonances is that of accurately locating the target's poles. A degree of precision is

necessary in the determination of these locations due to the possibility of different

targets having poles which are relatively close, causing difficulties in selecting between

the two targets in an identification scheme. Examination of a signal's spectrum is

typically done using the fast Fourier transform (FIT) due to this algorithm's

efficiency and reasonable results for a large class of signal processes. However, due

to one of its main limitations as given by Kay and Maple [11], the FFT is

inappropriate for use in locating radar target natural resonances. The frequency

resolution in Hertz is roughly the reciprocal of the time interval in seconds over

which the sampled data is available. A radar return pulse from the 1/72 scale model

aircraft used in this thesis cannot typically be expected to be more than 5ns in

duration giving a frequency resolution of no better than 200MHz and typically is

much worse. Full-size radar targets will have responses of several 4s, but it would
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still be advantageous to achieve a greater frequency resolution than the FFT can

provide. A second limitation is that the FFT is used only to determine the

frequencies contained within a signal; for target identification schemes a complete

pole location in either the s-plane or the z-plane is required.

1. Direct Minimization

As presented by Morgan [10], the late-time response of a radar target can

be represented as a sum of damped sinusoids oscillating at the target's resonant

frequencies.

) = A 0 cos(wi t + e.) (5)
i=1I

In the digital domain, this representation becomes:

N

Y(nAt) = Y,, = .A.& cos(w nAt + 0.) (6)
i11

Each of the sinusoids in the representation is defined by its amplitude, A i, clamping

rate, Oi, frequency, wi, and phase, Oi. These parameters can be adjusted to minimize

the mean square error between the modeled signal y,, and the actual received

discrete signal y,,, where the squared error at each point is e,2(_Y I Use of this

technique is computionally inefficient due to the high degrees of dimensionality and

non-linearity; however, Chong was able to use it to process synthetically generated

data down to 15 dB signal-to-noise ratios [12].

11



2. Prony's Method

Prony's method is a technique for modeling data of equally spaced samples

by a linear combination of exponentials. This technique can be used to model the

late-time response of a radar target. This autoregressive model is given by

KD (7)
y. = ,,jn-, for n = 0, ",N-1

Here y, is the n-th sample of the received signal and KD is the system order. Taking

the z transform gives

z -az - a - .. aCK- = 0 (8)

The roots of :his polynomial are the poles of the system model in the z-plane. By

first finding the coefficients aj, thv:!e poles can be located. These coefficients can be

found by using equation (7) in a system of M equations:

Y,, Y r a ] [ Y K 1KDI =(9)

S.M.. [a,. YKD+M-1

The original Prony's method required that the data matrix be exactly

determined with M = KD = the system order. For resonance based target

12



identification this is not likely to be possible since the system order will not be known

a priori. The extended Prony method [11] seeks an approximate fit with KD

exponentials by setting M > KD and minimizing the squared error. With this

extension the technique can be used with noisy data. In practice however, the noise

tends to perturb the extracted pole positions and one is still left with the problem of

not knowing the system order KD. If the order is estimated below the actual value,

poles will be lost and those extracted will not be accurately located. Overestimating

generates spurious poles due to the noise with no means of separating them from the

true poles.

3. Kumaresan-Tufts Algorithm

Kumaresan and Tufts modified Prony's method in an attempt to alleviate some

of its shortcomings, including its sensitivity to noise and the need for a priori

knowledge of the system order. The first of these modifications was to deliberately

overestimate the system order. This provides the model with the flexibility to

compensate for the errors caused by noise. Second, singular value decomposition

(SVD) was used to partially alleviate the ill-conditioning of the data matrix. Also, the

causality of the system is used to separate the computed poles into orthogonal signal

and noise spaces. Kumaresan has demonstrated [13] that the use of singular

value decomposition in conjunction with a non-causal system model tends to force the

extra poles of an overestimated signal inside the unit circle on the z-plane, with the

signal poles remaining outside.

13



a. System Model

The system model used by Kumaresan and Tufts is an autoregressive

type model and is therefore applicable only to the late time portion of a radar return

signal. The non-causal model is given by

KD

y.= aiy.K,l_ (10)
i-l

Here KD is greater than the actual system order. In matrix form, with M such

equations, this becomes

l j Y0 (11)

YM YDM La =1 [M1
[ "'".. YKD'M-l al. y -1

Or, in matrix notation,

DY" a = y (12)

Here the coefficients ai correspond to those in (8) in that they define the polynomial

the roots of which are the z-plane poles.

b. Singular Value Decomposition

The use of singular value decomposition is at the heart of the

Kumaresan-Tufts pole extraction method. Its use allows solution of the system of

equations in (11) despite ill-conditioning of the data matrix, as well as separating the

14



signal poles from the noise poles. The following discussion of this technique is taken

principally from Golub [14].

Singular value decomposition factors the MxKD data matrix Dy into the

product of three matrices:

DY = UE VT (13)

The columns of U (MxM) are eigenvectors of DYDyT and the columns of VT (KOxKD)

are eigenvectors of D.D. If the data matrix has rank r, then the MxKD matrix E will

consist of r singular values on its diagonal, the roots of which are the eigenvalues of

both DTD and DyDy . When used with an over-determined system the diagonal of the

E matrix splits into a signal subspace

uvu2,..,uK with eigenvalues 9 " (14)

and a noise subspace

u.uje,..,uw with eigenvalues !. Tj M.>IM. (15)

With no noise present, all the eigenvalues in (15) are zero and the rank of Z

reduces to KA, the actual system order.

In order to solve the system of equations in (12), the pseudoinverse of Dy

can be found as

15



y* (EU 16)

where z + is a KDxM matrix whose singular values are the reciprocals of those in the

Z matrix. The coefficient vector a, of minimum Euclidian norm, is then given by

a = D;y (17)

The coefficient vector a in (17) prov'des the best possible (least-squares) solution to

(12).

c. Bias Compensation

Kumaresan and Tufts [15] noticed the partioning in (14) and (15)

and modified the algorithm in an attempt to reduce the effects of noise. Kumaresan

and Tuft:, averaged the values of the singular values spanning the noise space (15)

and then subtracted this value from each of the singular values spanning the signal

space (14). The noise singular values were then set to zero and the new 7, matrix

which resulted was used in computing the pseudc;-iverse. Although no analytical

justification for this technique was provided, it dramatically reduced the effects of

noise and allowed an increase in achievable frequency resolution.

A second scheme for bias compensation was derived by Norton

[16]. The noisy data matrix can be described by Dy=S+N, where N is composed

of the wide-sense stationa~y white noise process vi, and can be represented as

16



N = (18)

VM .VMK

The expected value of DYDYT can be determined as

yDy = E[(S+N)(S+N) ] = EISST] + E[SNT] + E[NST] + E[NNT] (19)

With the assumption of wide-sense stationary white noise, the noise has zero mean

and the two cross product terms are zero. Also, E[NNT]=TI and, since S is

deterministic, E[SST]=SST. The expected ,alue of DyDyT can then be written

E[DYD T = SS '+a 2 (20)

According to the eigenvalue shifting tLeorem, if the eigenvalues of SST are X, the

eigenvalues of the matrix E[DDT] are Xj + c2. Therefore, in the mean, the

eigenvalues of p T are increased by the variance of the noise. This led Norton to

propose a bias cuipensation method by squaring the singular values of the Z matrix

which correspond to the power of the noise, and then take the average in order to

obtain an estimate of the noise variance a,,. The noise singular values are then set

to zero. The first KD singular values of the z matrix con, spond to the system poles

and th'ey are next squared and the estimate of the noise variance is subtracted from

each. The square root of this result is then used as the new set of singular values

17



corresponding to the system poles. As in the Kumaresan-Tufts bias compensation

scheme, the pseudoinverse can then be found in the normal manner.

d. Earlier Results

The Kumaresan-Tufts algorithm was tested using synthetic data, thin

wire integral equation data, thin wire scattering measured data and scale model

aircraft measured data by Larison [4]. He was able to demonstrate reasonable pole

extraction performance for low frequency poles. Because the algorithm can only be

used in the late time portion of a target's response, the algorithm had difficulty

extracting higher frequency poles with their corresponding higher damping rate.

Larison's results also suggest that the two most critical parameters in using the

algorithm are selecting the ,ppropriate starting point at which to begin processing the

data sequence as well as selecting the appropriate system order so that the bias

compensation scheme will provid-_ the best possible results.

B. CADZOW-SOLOMON ALGORITHM

The Cadzow-Solomon algorithm [17] has shown a greater degree of promise

for use in natural resonance extraction from radar target return signals than any of

the earlier described algorithms and was used exclusively for the construction of a

target library in this thesis. This section describes the algorithm.

1. System Model

The Cadzow-Solomon algorithm is based on an autoregressive moving-

average (ARMA) type model and, as such, requires knowledge of both the system's
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input and output. It is capable of estimating both the poles and zeros of the system.

The governing equation is given by

K 0  KN 21
YR = ray. + E (21)

i-i 1-0

Here KD is the order of the denominator of the system's transfer function (poles), KN

is the order of the numerator (zeros), and x,, is the exciting waveform. A set of M

such equations in matrix form would be represented by

aK

YX0 x,,YO YYg-

YKD
al

S.. .. •(22)

Sb K
• YKD M-1

YM-I YK, aM-2 XM-1 X ,Y+-I •

ao

Following the technique used in the Kumaresan-Tufts algorithm, it is possible to

overestimate the order of both the zeros and the poles in the system in order to

provide a degree of noise immunity for the input and output waveforms respectively.

If the actual system order is K D (< KD) and the actual order of the numerator in

the system transfer function is KN' (. KN), then a necessary and sufficient condition

fo, the model equations (22) to have a solution is for the data matrix to have a rank

of KD + KN + 1. Cadzow and Solomon state that this condition will be ensured by
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taking n = 0 to correspond to that time instant at which the excitation first becomes

nonzero for a transient type excitation.

Equation (21) can be modified for backward prediction [16]

= + K (23)
Y , ,+ a x-

In matrix form this is

a K

IYK.+I YKN+K. 
N Xo 

YKD
a,

. ... . • (24)

YKN.M YKN+KD+M- XM-1 " xKM.1 • KD

a.

In matrix notation

[D y ] y w here [D ,] [D , D ]  (25)
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2. Singular Value Decomposition

The use of singular value decomposition to solve the system of equations

(24) again provides the minimum-norm solution. Its use with the non-causal model

again separates the noise poles from the signal poles across the unit circle.

3. Bias Compensation

Cadzow and Solomon have shown that if the numerator and denominator

orders KN " and KD° are overestimated as K,,, and KD, singular value decomposition

will return at least s= 1 +min{K-kD',KN-KN' } of the eigenvalues with a value of zero

for noiseless data. In the noisy case, these eigenvectors can be expected to take on

some low values which may allow them to be distinguished from the preceding

eigenvalues. However, because of the composite form of the data matrix, and

because the eigenvalues are returned in standard nondecreasing order, it does not

appear possible to directly partion the eigenvalues in the form of (14) and (15)

saying, for example, that a certain subset corresponds to the signal poles, another to

the signal zeros, and the remaining to the extraneous poles and zeros. This is the

first drawback of the Cadzow-Solomon algorithm in terms of bias compensation. For

a compensation scheme such as that used by Kumaresan and Tufts [15], the number

of singular values that should be set to zero cannot be readily determined.

Another drawback of the composite data matrix in terms of bias compensation

is that the additive noise is different for the input and output data. Norton's

eigenvalue compensation scheme is theoretically valid only if the input and output

noise variances are equal [16]. In constructing the target library in this thesis the
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input data is not noisy. The same is not true for the output data. Nonetheless,

Larison [4] made the assumption of equal noise variance and processed data using

eigenvalue compensation with the Cadzow-Solomon algorithm achieving good results.

Testing of the algorithms prior to construction of the target library (Chap. III)

confirmed the consistently superior results obtained making this assumption and using

eigenvalue compensation. For this reason, eigenvalue compensation was used

throughout this thesis in attempts at the construction of a target library.

C. DETERMINING SYSTEM ORDER

The use of either of the bias compensation schemes presented requires an

estimation of the order of the system. Larison [4] used a trial and error technique,

systematically varying his estimate of the order and observing the effect of a

particular estimate on the arrangement of the poles. As the correct order is

approached the noise poles assume an orderly, even arrangement about the unit

circle. Algorithms such as the information theoretic criteria by Akaike [18] have

been proposed which can determine the system order by a statistical examination of

the eigenvalues returned by singular value decomposition. These algorithms look for

the partioning which is present as in (14) and (15). This section will examine the

algorithm behind the Akaike information theoretic criteria (AIC) and then examine

considerations for its use with algorithms for radar target identification.
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1. Information Theoretic Criteria

The earlier discussion on singular value decomposition within the

Kumaresan-Tufts algoriihm explained the properties of the eigenvalues r7, > 12 >

> rim of the MxKD matrix E: they are nonnegative and the largest ones rtj, r7P ...,

7lK (KL < KD) have corresponding eigenvectors which span the signal subspace. The

remaining eigenvalues and their corresponding eigenvectors represent the noise

subspace. The information theoretic criteria seeks to estimate the integer rank of the

signal subspace. This value can then be used when applying either of the bias

compensation schemes. The following discussion of the criteria follows that in

Aurand [19].

Singular value decomposition returns the z matrix which consists of KD singular

values on its diagonal, which are the roots of the eigenvalues of interest. Then for

an index p = 0,1,...,KD-1, the information theoretic criteria is calculated as

AIC(p) = LR(p) + p(2 KD-p) (26)

where LR(p) is a log-likelihood ratio of a representation of the correlation matrix.

For a given size data matrix with the Kumaresan-Tufts algorithm the total number

of data points processed, N, is M+KD-1 and LR(p) is given by
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K0 1-f(Kfi DP)

R) = -In 'P K p=0,1,...K-. (27)

KD-Pi-P-1

The best estimate of the rank of the signal subspace, KD', is the value of p for which

the AIC criterion is minimized. Aurand went on to simplify the expressions in order

to facilitate computer coding arriving at

1 D

AIC(p) = (KD-p)N ln[- r] - N ln[ j -n] + p(2 KD-p) (28)
K D-P fp+i ifp+l

forp = 0,1,...,KD-1.

The first term in the above equation is the logarithm of the arithmetic mean of

the (M-p) smallest eigenvalues. The second term is the logarithm of the geometric

mean of these same eigenvalues. As the smallest eigenvalues become more uniform,

the ratio of the geometric mean to the arithmetic mean approaches unity and the

sum of the first two terms, LR(p), approaches zero.

2. Use Of AIC in Pole Extraction Algorithms

The AIC algorithm is an extremely effective means of estimating system

order when using an algorithm such as Kumaresan-Tufts which uses overestimation

to reduce the effects of noise and is based on an autoregressive model. The

partioning represented by (14) and (15) seems readily susceptible to exploitation by
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this type of algorithm. Aurand [Ref. 19: Chap. V] states that order estimators of this

type are most effective when the algorithm is run several times and the value of the

system order which recurs most frequently is selected as the most reliable estimate.

In using a pole finding algorithm to determine the natural resonances of a complex

target such as a scale model aircraft, it is usually necessary to run the algorithm

several times before the poles are accurately located due to the need to determine

the optimum values of parameters such as the starting point and the row and column

dimensions of the data matrix. An algorithm such as AIC reduces the number of

parameters which must be determined since the best value of the system order will

tend to surface as the remaining parameters are being identified.

As discussed earlier, use of singular value decomposition with the Cadzow-

Solomon algorithm does not result in a Z matrix which consists of singular values

which are as easily partioned as is the case with the Kumaresan-Tufts algorithm. As

such, it is not as susceptible to analysis by algorithms such as AIC for determining the

correct order of the system. Nonetheless it was found to be helpful at determining

an upper end for an estimated system order for use in bias compensation. It seems

likely that use of this algorithm, which is intended for use with data governed by an

AR type model, is effective at determining the location of the 1 +min{KD-KAKN-K; }

break in the eigenvalues returned following singular value decomposition when using

the Cadzow-Solomon algorithm. Kay [20] discusses a modification to the AIC

algorithm for use with ARMA systems, but the existence of this algorithm was

discovered to late for incorporation into this thesis.
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Ill. ALGORITHM TESTING

The original objective of this thesis was the construction of a library of poles

extracted from scale model aircraft. The attempt at this goal took place in a two

phase process. The first phase consisted of testing of the Cadzow-Solomon pole

extraction algorithm using synthetic data as well as data from a simple target in the

form of a thin wire. This phase was necessary in order to gain proficiency in the use

of the algorithm prior to attempting to extract the poles from a complex target. It

also provided the opportunity to gain an appreciation for what the strengths and

weaknesses of the algorithm would be in extracting these poles. As such, the

synthetic data testing phase of this work was more extensive in terms of its attempt

to simulate the conditions which could be expected from the response of a complex

target than had been the case in previous works. The second phase of the process

was to extract the poles from the measured scattering response of the scale model

aircraft. As discussed in the previous chapter, the extracted poles are a least squares

solution to the governing equations. Noise, unknowns such as the actual system

order, and the fact that certain poles may be more or less excited depending on the

angle of incidence of the exciting waveform all tend to cause slight variations in the

location of the pole as extracted by the algorithm. Repeated runs of the code tend

to display clusters of extracted poles. These clusters were expected to correspond to

the true poles of the target. For simple targets and simple synthetic data, this
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appears to be the case as will be explained in this chapter. For more complex

targets, such as the scale model aircraft targets used in this thesis, this was found to

not necessarily be true, as will be explained in the next chapter.

A. SYNTHETIC SIGNAL MODEL

The Cadzow-Solomon algorithm is based on an autoregressive model. As

discussed in Chapter I, a portion of the scattered field of a real target is due directly

to he driving incident wave and the remainder of the field is due to feedback

currents occurring on the surface of the target. Thus an autoregressive moving

average (ARMA) structure is appropriate for modeling this phenomenon. The

generating equation for the synthetic signals used for testing the algorithm is given

by

N L

Y. E ay,,-_ + E_, br-i (29)
i-1 i-O

where x, is the digitized exciting waveform, y,, is the scatterer response, ai are the

coefficients which correspond to the scatterer's poles in the fashion of equations (7)

and (8). Similarly the coefficients bi correspond to the zeros of the transfer function

describing the scatterer. N is the order of the denominator of the system's transfer

function and L is the order of the numerator.

Three separate signals were generated, each based on ten pole pairs covering

a frequency range from 1-10 GHz. Each of the three base signals represented a
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different level of damping (Q factor). The corresponding pole pairs in each of the

signals were related in the s-plane by

-[lnk,) (30)
WR 2 n

where k1 = 0.5 for the low Q or highly damped case, k2 = 0.7 for the medium Q case

and k3 = 0.8 for the high Q case. Appendix A contains a listing of the s-plane poles

used in the synthetic signals. The line of thought followed in creating these signals

was to have the medium Q case approximate as closely as possible the expected level

of damping from the actual measured scattering responses of the scale model aircraft

targets.

The s-plane poles were then converted to z-plane poles based on 1024 samples

over 20 ns. Multiplying terms (z-z,)(z-z2)...(z-2o) where zi is the i-th z-plane pole

results in a polynomial of the form of (8). The coefficients of this polynomial are the

coefficients ai in (29). The coefficients bi used to create the synthetic signals, were

arrived at through an inverse partial fraction expansion using the 1/(z-zi) terms. They

were all generated using an amplitude value of 1.0 and a phase difference of 0.0 for

each of the signal poles. Program listings for the coefficient generator and the

recursive signal generator appear in the appendices.

The exciting incident waveform chosen to generate these test signals was the

double Gaussian pulse depicted in Figure 2. This pulse is a wide Gaussian pulse with
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a ten percent width of 0.3 nanoseconds subtracted from a narrow Gaussian pulse with

a ten percent width of 0.15 nanoseconds, resulting in a bandwidth covering

approximately 1-10 GHz. The spectral content of the double Gaussian pulse is

illustrated in Figure 3.

Once the three base test signals were generated, they were each run through

a additive noise program, generating signals with signal-to-noise ratios (measured in

terms of signal energy to noise energy) of 90 dB, 30 dB, 20 dB, 10 dB, and 7 dB. A

total of fifteen test signals were thereby generated. Figure 4 illustrates a typical

synthetic test signal generated through this process.

B. SYNTHETIC SIGNAL TESTING RESULTS

Using the Cadzow-Solomon pole extraction program written by Larison [4], with

modifications to allow use of the AIC algorithm, the poles were extracted from each

of the fifteen test signals. In each case the input parameters to the program were

varied in an attempt to achieve a minimum error distance between the true pole and

the extracted poles. Figures 5-19 illustrate the results of this effort. Table I lists the

average error distance between the true pole and the nearest extracted pole,

measured on the z-plane for each of the fifteen synthetic signals tested.
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Figure 2. Incident Double Gaussian Pulse
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Spectrum of Double Gaussian Pulse

61-

* 5

21-/

05 10 15 20 25

Frequency (GI-Iz)

Figure 3. Spectrum of Incident Pulse
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Figure 4. Synthetic Medium Q Test Signal S/N=20 dB
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Figure 5. Pole Extraction from High Q Synthetic Signal, S/N=90 dB
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Figure 6. Pole Extraction from High Q Synthetic Signal, SIN =30 dB
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High 0 Synthetic Data S/N=2OdB
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Figure 7. Pole Extraction from High Q Synthetic Signal, S/N=20 dB
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High 0 Synthetic Data S/N=10 dB
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Figure 8. Pole Extraction from High Q Synthetic Signal, S/N=10 dB
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High Q Synthetic Data S/Nr-7 dB
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Figure 9. Pole Extraction from High Q Synthetic Signal, S1N=7 dB
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Figure 10. Pole Extraction from Medium Q Synthetic Signal, S/N=90 dB
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Medium Q Synthetic Data S/N=30 dB
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Figure 11. Pole Extraction from Medium Q Synthetic Signal, S/N=30 dB
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Figure 12. Pole Extraction from Medium Q Synthetic Signal, S/N=20 dB

40



Medium 0 Synthetic Data SIN =10 dB
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Figure 13. Pole Extraction from Medium Q Synthetic Signal, S/N=10 dB
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Medium Q Synthetic Data S/N=,7 dB
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Figure 14. Pole Extraction from Medium Q Synthetic Signal, S/N=7 dB
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Low Q Synthetic Data S/N=90 dB
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Figure 15. Pole Extraction from Low Q Synthetic Signal, S1N=90 dB
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Figure 16. Pole Extraction from Low Q Synthetic Signal, S/N=30 dB
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Low Q Synthetic Data ,/N=ZO dB
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Figure 17. Pole Extraction from Low Q Synthetic Signal, S/N=20 dB
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Low 0 Synthetic Data SIN=1*0 dB
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Figure 18. Pole Extraction from Low Q Synthetic Signal, S/N=10 dB
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Low Q Synthetic Data S/N=7 dB
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Figure 19. Pole Extraction from Low Q Synthetic Signal, S1N=7 dB
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TABLE 1. EXTRACTED POLE ERROR DISTANCES

S/N (dB) HIGH Q MEDIUM Q LOW Q

90 2.7423E-5 1.5821E-3 2.8017E-2

30 7.2861E-4 5.9002E-3 2.7849E-2

20 2.2292E-3 1.3615E-2 3.8008E-2

10 1.0582E-2 2.2484E-2 5.0115E-2

7 1.2609E-2 2.4227E-2 1.2668E-1

In moving from synthetic data to measured data the problem becomes one of

attempting to locate unknown poles rather than attempting to minimize the error

distance between a known pole lccation and an extracted pole. True poles were

expected to tend to assert themselves repeatedly despite slight variations in the

parameters used in processing or despite different noise sequences. Poles to be used

for filtering were then going to be taken to be the centroids of a cluster of extracted

poles. In an attempt to simulate the techniques which would be used in extracting

poles from measured data, one further test using synthetic data was conducted.

Fourteen different medium Q data sequences were created. To each of these noise

was added, using a different seed for the noise generator, to a signal to noise ratio

of 20 dB. Each of these sequences was processed and the extracted poles have all

been plotted in Figure 20. The clustering is very apparent in this plot. The lower

frequency poles have the extracted poles from each of the fourteen different signals
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Figure 20. Test of Pole Clustering Using Synthetic Signals
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so tightly grouped that they are indistinguishable. Observing that the lowest

frequency pole is not quite as tightly grouped as the next few poles despite the fact

that it has less damping illustrates the effect of the spectrum of the exciting waveform

(Figure 3). The energy contained in the exciting pulse is significantly lower at the

frequency of the lowest pole compared to the next several poles. Thus this mode is

less strongly excited and the pole itself is more difficult for the algonthm to extract.

Figure 21 displays the magnitude of the Fast Fourier Transform of one of these

fourteen test sequences and it serves to further illustrate this observation.

Based on all of the results using synthetic data, several observations were

made. The first of these is that best results were obtained by choosing a start point

located within several points of the zero crossing nearest to the first obvious response

to the excitation. This is in accordance with observations made by Larison [4].

The second observation made is that best results were normally obtained using

a data matrix which was as large as possible. During the synthetic data testing of this

work, the program being used allowed a data matrix with ximrum dimensions of

70x70. Within this framework, best results were obtained by setting KN= 2 0, the

actual order of the numerator of the system transfer function, and setting KD= 4 8 ,

thereby filling out the data matrix. Underestimating the value of KN would result in

inaccurate results. Overestimating KN did not increase accuracy. This is due to the

fact that the input waveform was noise free and therefore did not require

overestimation. Conversely, the output waveform was not noise free and by
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Figure 21. Magnitude of the FFT of One of the Synthetic Signals Used in the
Cluster Test
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overestimating KN, there was less space available in the data matrix for

overestimating KD and eliminating some of the effects of noise. It was also noted that

if the signal was of short duration, it was not always advantageous to use the

maximum possible size of the data matrix. Once the signal becomes completely

buried in the noise it is better not to include any further points in the data matrix.

Thus it is best to include as many full cycles of data contained in the output

waveform as was possible within the limitations of matrix size and noise.

The best results were not always obtained when using the bias compensation

scheme by setting the estimated system order to the true value of 20. In particular

at high signal-to-noise ratios more favorable results were obtained by setting the

estimated system order to higher than the true value. The Akaike Information

Criterion (AIC) routine was extremely useful for identifying this optimum value.

Figure 20 illustrates that despite the use of the bias compensation scheme, an

element of radial (damping level) bias may be expected throughout the bandwidth

of the measurement system. At higher frequencies, where the damping is higher, an

element of axial (frequency) bias appears as well.

C. THIN WIRE SIGNAL TESTING

The algorithm was further tested using both Morgan's time-domain thin

wire integral equation (TDIE) program [21] and thin wire measured scattering

data. For a detailed explanation of the techniques used for measuring the scattering

from the thin wire as well as the scale model aircraft targets see [22].
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1. Thin Wire Integral Equation Generated Data

The TDIE program was used to compute the backscattered response of

a thin wire to an incident double Gaussian pulse for several different incident angles.

These responses were then perturbed by noise to signal-to-noise ratios of 90 and 20

dB. Figure 23 illustrates the results of the pole extraction for the 90 dB S/N case.

The first five poles appear with very strong clustering for all angles of incidence. It

should be noted that these true poles appeared quite consistently in these locations

despite variations in the parameters used in processing the signal with the Cadzow-

Solomon algorithm. Noise poles and the superfluous signal poles located closer to

the center of the unit circle were much more volatile in their location as parameters

Were varied. Although the signal may contain more heavily damped poles than those

principle poles located near the unit circle, accurate locations would be much more

difficult to determine and those pole locations deep inside the unit circle should not

be trusted. Due to the high level of damping, knowing their location would not be

necessary for use *i an annihilation filtering scheme. Figure 23 displays just the first

quadrant of the previous plot in order to better illustrate the high degree of clustering

of the principle signal poles. As expected, broadside excitation failed to elicit a

response from every other mode. Excitation at an angle of 70 degrees from the axis

of the wire apparently failed to excite every third mode.

"1 ne TDIE program generated a response which consisted of 960 points

over 20 ns. This sampling rate is different fiom that used in the synthetic ARMA

data and the measured data, thus these z-plane plots are not directly comparable.
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Figure 22. Poles Extracted from TDIE Generated Thin Wire Response S/N=90
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54



Extracted Poles

0.80

030

E X

0.-Inciden 't Angle
0.-+ 5 Degrees

*45 Degrees
o e grees

K YJe grees
0.2 -

0 0.2 0.4 0.6 0.8 1

Real z

Figure 23. First Quadrant View of Poles Extracted from TDIE Generated Thin
Wire Response S/N=90 dB
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However, the ability to extract poles at certain frequencies corresponded well to the

level of excitation provided by the double Gaussian, as was the case with the synthetic

ARMA data.

In processing the thin wire data, the feed-forward order of the system, K N ',

is calculated by determining the length of early-time as 24 c. The duration of the

pulse width need not be included in this calculation because the pulse itself is

included in the data matrix which is processed. This time value is then converted to

the appropriate number of time points based on the sampling rate used. This

number of time points is the minimum value which can be used for KN, since it

represents the number of delays in a z-transform which would be necessary to

represent the early-time of the system. Depending on how large this value is, it may

be more efficient to back off some number of points from the earliest possible

processing point in order to process less of the early-time data and to keep the value

of KN low. In general it was found that best results could be obtained if at least 20

points of early-time were processed. For thin wire data at near broadside angles of

incidence, early-time will be very short when calculated in this manner. Nonetheless,

it is necessary to retain some minimum value of KN in order to allow the necessary

information regarding the excitation to be included in the model of the system.

Another important consideration in the processing of this data which was

observed was the scaling of the input waveform. Although the data was generated

using a double Gaussian pulse with a peak amplitude of 1 volt, better pole extraction

results could be achieved if the double Gaussian waveform used in the data matrix
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for processing had a peak value which was on the same order of magnitude as the

peak value of the response waveform. Such scaling in no way changes the frequency

content of the exciting waveform but it does apparently provide better results by

minimizing some of the effects of ill-conditioning in the data matrix.

Figure 24 illustrates the results of the pole extraction at a signal-to-noise

ratio of 20 dB. Figure 25 is again a view of the first quadrant of the previous plot.

Reasonable clustering is still evident in the first five poles, although the effects of the

noise are obvious.

The efforts at pole extraction in this thesis were done in concert with work

on annihilation filtering by Reddy [23]. Reddy used the poles extracted here from

the TDIE thin wire data to build an annihilation filter. He built two additional filters,

one of which had its pole locations perturbed above those extracted by five percent

in both frequency and damping, as well as one in which the poles were perturbed

below the extracted location by five percent. In passing the TDIE thin wire signals

through these filters, he found that the filter which consisted of zeros corresponding

to the poles extracted here consistently exhibited lower output energy than did the

filters with perturbed zero locations.

2. Thin Wire Measured Data

Figure 26 illustrates the results of pole extraction from the actual measured

response of a thin wire. The results of this extraction are roughly comparable to that

achieved for the TDIE thin wire data at a signal-to-noise ratio of 20 dB. Reddy [23]

used these extracted poles again to build three filters, one of which used zeros
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corresponding to the extracted poles and the others based on five percent variations.

The correct filter again consistently exhibited the lowest output energy when the

measured thin wire responses were fed through them.
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IV. POLES OF SCALE MODEL AIRCRAFT

The original objective of the work done for this thesis was the construction of

a library of poles corresponding to a number of different scale model aircraft targets

in order that these poles could be used to demonstrate the identification of complex

targets in an annihilation filtering scheme. This was attempted after poles had been

extracted from two aircraft models, but the corresponding filters were unable to

properly identify the correct target with any degree of consistency. This led to an

investigation of the potential problems. The principle reason for the failure was

apparently the complexity of the spectrum of the responses of these complex targets

to the exciting pulse. This complexity was much greater than expected. As will be

shown, this complexity can lead to clustering at incorrect pole locations. A

consequence of this complexity, as discovered by Reddy [23], is that annihilation

filters with enough selectivity to discriminate between similar targets are difficult to

build. This chapter will examine some of the problems which occurred when

attempting to build a library of scale model aircraft target poles.

A. COMPLEXITY OF THE RESPONSE OF COMPLEX TARGETS

As mentioned, the complexity of the response of the scale model aircraft targets

in the frequency domain was more complex than was expected, and may be more

complex than is appropriate for using any of the discussed pole extraction methods

as they currently stand. This section will examine this complexity through the use of
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the Fast Fourier Transform. It will also be demonstrated that observations of well

defined clusters when using the Cadzow-Solomon algorithm, as it was used during

testing, are no guarantee that poles have been accurately located. Difficulties arise

not only in accurately locating the poles of these complex targets, but in determining

which of the target's poles can be used most successfully in an annihilation filtering

target identification scheme.

1. False Pole Clustering

Data for two different scale model aircraft targets were processed using the

Cadzow-Solomon algorithm, while following the lessons learned during the algorithm

testing. Poles were extracted from the measured responses of the aircraft to

electromagnetic excitation incident at 0, 30, 90, and 180 deglees from nose-on as well

as two cases with the excitation incident onto the top of the aircraft, one case with

the wings parallel to the incident electric field and the other with the fuselage parallel

to it. In processing the thin wire data, the principle poles consistently exerted

themselves despite the use of a wide range of parameters in processing. With the

scale model aircraft targets, there were no poles which appeared nearly as

consistently. Nonetheless, it was possible to achieve excellent clustering with slight

variations in the parameters used. It was assumed that if poles repeatedly exerted

themselves despite slight variations in the parameters used in processing, they are

very likely to be true poles. Thus, in processing the data, the set of parameters which

allowed clusters of poles to exhibit this characteristic was searched out. The tell-tale
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sign of orderly spacing of the noise poles was also an important characteristic which

was watched for in attempting to locate the aircraft poles.

Figure 27 illustrates the extracted poles from one of the responses of one

of the scale model targets. The clusters are the result of seven different runs of the

algorithm in processing the signal. Each of the seven runs had one of the principle

parameters (starting point for processing, estimated system order used for bias

compensation, and data matrix size) varied slightly about some initial value.

Although the figure shows only those poles inside or very near the unit circle in the

first quadrant of the z-plane, the noise poles did appear in an orderly fashion as has

been mentioned. Plots similar to this were generated for each of the six measured

responses of the target. The centroid of each of the clusters in each plot was

calculated and was expected to be a true pole for the response at that particular

angle of incidence. Because it was desired to demonstrate aspect independent target

classification, the poles for each of the angles of incidence were compared and those

which appeared with a degree of consistency were averaged and used in the initial

filtering attempt. In this manner, filters for two different aircraft were constructed.

These filters .,,ere then used in an unsuccessful attempt at discriminating between the

two aircraft [23].

In investigating the reason for the inability to discriminate between the two

targets, one of the things which came out was that it is possible to have pole

clustering at false pole locations. This was the case for the poles in Figure 27.

Figure 28 illustrates pole clustering for the same aircraft and angle of incident
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excitation as in Figure 27. For this figure a different set of parameters was used in

processing the data for the initial case, but the clustering was achieved by varying the

parameters in the same manner as was done for Figure 27. The array of parameters

presents the processor with a huge number of degrees of freedom in processing the

data. With these targets it seemed that by choosing the parameters appropriately,

clusters could appear almost anywhere. A consequence of this is that clusters could

also appear in comparing poles extracted from the returns of the target illuminated

from various aspects without. These cluster locations can also be false in that they

may not lead to success when used in an annihilation filter.

In order to guard against the possibility of false clustering, steps were taken

to ensure that the model used in processing the data was appropriate. As discussed

in the previous chapter with regards to the processing of thin wire scattering data,

calculations regarding the feed-forward order of the system were made based on the

size of the target and the resulting duration of early-time. Scaling of the input

waveform was used to prevent numerical ill-conditioning.

The possibility that the complexity of the current modes during the earliest

portions of late-time induced numerical errors was also investigated. During this

period, there may be feed-forward modes which are incomplete and by attempting

to incorporate them into the signal model, errors in pole locations may result. In an

attempt to avoid this problem the data was processed using only the later portion of

early-time, with a corresponding reduction in the value of KN used. No direct
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improvement was noted in the ability to extract poles which would provide better

results in an annihilation filtering scheme.

2. A Look at the Spectra

Further investigation revealed that the problem may not have been so

much that the algorithm was incapable of locating poles in the target's response as

the response having just too many closely located poles. The FF1' was used to study

the spectra of the response of the scale model aircraft targets. Although the FFT

cannot provide pole locations which could be used for target identification, it can

provide some insight into the nature of the response of scale model aircraft to

incident electromagnetic excitation.

Figure 29 illustrates the magnitude of the FFT of the response of a single

aircraft for three different angles of incident excitation. These FFTs were taken using

the points which were expected to best fit the model used in the Cadzow-Solomon

processing algorithm. The last twenty points of the calculated early-time were

included as well all of the late-time response until the signal appears have decayed

well into the level of the noise. The data file was then zero padded to provide a

reasonable degree of resolution prior to taking the FFT. Several other possible

windows of the data were used in attempts to gain more insight into the frequency

domain, but that presented here appeared to provide the most insight. Including

more late-time points resulted in a plot having a larger variance and including much

more of the early-time tended to smooth the plot out to the point where it provided

little useful information.
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Examining Figure 29 reveals that there is not a single frequency which

appears to be resonant to any strong degree for all three aspects. The figure also

shows that there may be poles which are closely located and that the poles may not

appear with any regularity in terms of their spacing in frequency. The three aspects

which are included in this figure were expected to provide relatively similar responses

to the excitation. Viewed electromagnetically, the target was expected to look similar

directly from the front and from the rear; that is the principle structures which will

resonate (wings, fuselage, etc.) were illuminated with fields which were orientated in

the same direction in each case.

Figure 30 displays the same situation for another of the scale model

aircraft targets. The problem of the large number of poles present within the

bandwidth excited by the double Gaussian pulse is again visible as well as the lack

of a strong correlation between different angles of incidence. Comparing the two

figures reveals another problem. Poles which seem to correspond closely between

the two targets appear to have been excited for some of the angles of incidence. If

the pole finding algorithm can be refined to locate poles in the response of complex

targets to a high degree of accuracy it should still be possible to discriminate between

these closely corresponding poles. Poles located this closely would still present

problems if they are to be used in an annihilation filtering scheme for target

identification as well be examined in the next section.

In contrast to the two preceding figures, Figure 31 displays the spectra of

the measured response of the thin wire using the same rules to decide which points
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would be incorporated in the FFTs. Here the correspondence in resonances between

the different angles of excitation, particularly for the lower frequencies. Comparing

this figure with Figure 26 reveals good correlation between the appearance of a

strong resonance in the FFT and the ability to extract a corresponding pole with the

Cadzow-Solomon algorithm.

B. ANNIHILATION FILTERING LIMITATIONS

The inability to demonstrate target identification using a resonance based

annihilation filtering scheme appears * be due not only to problems with pole

extraction caused by the complexity of tfle spectrum, but also to limitations of the

annihilation filter when attmpting to discriminate targets with closely located poles.

.As utilized by Reddy [23], an annihilation filter consists of a pulse, known as a "kill-

pulse," whose zeros correspond to the pols of the target whose response is to be

annihilated. This pulse is convolved with the target response and the late-time energy

of the resulting waveform is measured. Figure 32 illustrates the spectrum of one of

the kill-pulses used in the attempt to demonstrate target identification using

annihilatior, filters. Zeros appear in the spectrum at apprcxima'ely 1.5, 3.0, 3.5, and

4.-, GHz Figure 33, which is a close up of the lower frequencies of tho spectrum of

this same kill-puise, helps to reveal that this pulse actually was built with a fifth zero

at 1.2 GHz. This figure illustrates that annihilation filters, as th.-y have been

implemented here, are incapable of providing s,,fficient resolution to discriminate

between closely located poles. The figure also .eveals that any targets which had
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poles located in the frequency range of approximately 0.7-1.7 GHz would have these

poles effectively annihilated by the filter, decreasing the likelihood that the filter

would provide a high degree of capability in properly identifying targets.

The problem with constructing these annihilation filters is thus twofold;

poles of a single target are often closely located, and poles of other targets can also

be closely located to poles of the first. If a filter is constructed with enough zeros to

result in a highly annihilated late-time waveform, this same filter may also strongly

annihilate the energy in the response of scale model aircraft other than the one for

which it was designed. If only poles which do not correspond with any degree of

proximity to poles in the response of any of the other targets are used in constructing

the filter, very little of the energy in the response of the target for which it was

designed will be annihilated by the filter.
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V. SUMMARY AND CONCLUSIONS

This chapter reviews the findings of this thesis. In light of the fact that the

original objective of developing a library of poles for scale model aircraft and using

these poles to demonstrate target identification through annihilation filtering was not

met, approaches which may lead to greater success in the future will be suggested.

A. SUMMARY

This thesis has presented an initial attempt to demonstrate radar target

identification by building on the earlier work of Norton [16] and Larison [4]. The

first portion of the work consisted of testing the Cadzow-Solomon algorithm for pole

extraction. The synthetic testing phase of this work was more comprehensive than

in previous efforts for two reasons: (1) the synthetic signals were generated by a true

ARMA type signal generator, and; (2) there was a relatively large number (i.e., 10)

of pole pairs cr 'iined within these signals. These pole pairs also covered the

complete frequency range which could be expected to be fully excited in the

scattering data taken from measurements in the anechoic chamber. Excellent pole

extraction capabilities were noted for synthetically generated data, integral equation

computed data, and for thin wire scattering data.

When analyzing the scattering data of scale model aircraft targets it was found

that the Cadzow-Solomon pole extraction algorithm was unable to extract poles which

could be used to implement a successful radar target identification scheme using
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annihilation filters. The principle reason for this appears to be that the natural mode

structure of the scattered radar signals from one of these complex targets is more

complicated than was anticipated and, as a result, more complicated than was

prepared for in the algorithm testing portion of this work. An additional

complication caused by the complexity of the scattered signal in the frequency domain

is that poles which are located close to one another, whether for a single target or

for separate targets, can present difficulties in discrimination when using annihilation

filtering.

B. CONCLUSIONS AND RECOMMENDATIONS

The spectra of the returned radar signals from the scale model aircraft were

expected in each case to be highly dominated by a few poles resulting from the

resonances of major structures on the target, such as the wings. It appears that the

situation is more complicated than was expected. Further work needs to be done

using targets of intermediate complexity. Investigating the scattering from multi-

element thin wire targets, for example two thin wires joined in the shape of a T or

a cross, could provide more insight into the nature of the response of scale model

aircraft targets. Such testing would also serve to demonstrate the abilities of

algorithms such as Cadzow-Solomo-i to extract the poles of these more complicated

responses.

The algorithm testing conducted in this work was done using signals which

turned out to be much less complicated than that of the scale model aircraft targets.
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Future work on this subject should include attempts to extract the poles of signals

which have poles which are not regularly spaced. It could also be useful to test the

algorithm using a synthetic signal composed of irregularly spaced poles which are

unknown to the program operator, but which could later be checked, in order to

determine more completely the validity of associating extracted pole clusters with true

poles.

The principle difficulty with the Cadzow-Pole extraction algorithm, as it was

employed in this thesis, is the large number of degrees of freedom which the operator

has in selecting the values of the parameters to be used in processing the data. It is

possible that some of these degrees of freedom could be removed, resulting in more

accurate and efficient pole extraction. Cadzow [24] has proposed a method of

signal enhancement which could potentially eliminate the need to conduct bias

compensation. The use of the ARMA based AIC system order estimator discussed

in chapter II, could be useful in estimating the optimal values of KD and KN for

processing the data.

Annihilation filters are an effective means for discriminating targets whose radar

scattering returns exhibit relatively simple spectral content. Difficulties arise when

attempting to discriminate more complex targets since the filters exhibit a significant

width in their nulls about a zero point. In light of the apparent complexity of the

frequency domain scattering response of aircraft type targets, a means to reduce the

impact of this width will need to be implemented. The use of multiple zeros at each

identified pole location is one possibility which may sharpen the ability of the filters
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to discriminate between closely located poles. If this is not possible some other

means of exploiting the natural resonances of targets may need to be discovered if

they are to be used for successful target identification.
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APPENDIX A. S-PLANE POLES USED IN SYNTHETIC TESTING

The following three tables list the s-plane poles which were used to generate the

synthetic signals used in the algorithm testing portion of this work. In generating

these signals each of the pole pairs was input to the ARMA coefficient generator

program with an amplitude of one and a phase of zero. These poles were developed

in accordance with equation (30).

TABLE Al. LOW Q SYNTHETIC POLES

fn an Wn
(GHz) (GNp/s) (GRad/s)

1 -0.6892 6.2474

2 -1.3784 12.4948

3 -2.0676 18.7422

4 -2.7568 24.9895

5 -3.4460 31.2369

6 -4.1352 37.4843

7 -4.8244 43.7317

8 -5.5136 49.9791

9 -6.2028 56.2264

10 -6.8919 62.4738
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TABLE A2. MEDIUM Q SYNTHETIC POLES

fn an (n
(GHz) (GNp/s) (Grad/s)

1 -0.3562 6.2752

2 -0.7124 12.5504

3 -1.0687 18.8256

4 -1.4249 25.1007

5 -1.7811 31.3759

6 -2.1373 37.6511

7 -2.4935 43.9263

8 -2.8498 50.2015

9 -3.2060 56.4767

10 -3.5622 62.7518

TABLE A3. HIGH Q SYNTHETIC POLES

fno f
(GHz) (GNp/s) (Grad/s)

1 -0.1652 6.2832

2 -0.3250 12.5664

3 -0.4876 18.8496

4 -0.6501 25.1327

5 -0.8126 31.4159

6 -0.9751 37.6991

7 -1.1376 43.9823

8 -1.3002 50.2655

9 -1.4626 56.5487

10 -1.6252 62.8319
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APPENDIX B. ARMA COEFFICIENT GENERATOR

A. PROGRAM DESCRIPTION

This program was used to generate the ak and bk coefficients of a scatterer

transfer function given by

H(z) + b z - +  + b z-L  (A.1)
1 + az - + + az -

after reading a data file containing the desired s-plane poles for each of the N pole

pairs. The program also reads in the sampling information to allow conversion of the

input s-plane values to the z-plane. Additionally, the program allows input of a

complex multiple of each z-plane pole pair to allow simulation of the relative

amplitude and phase of the transfer function poles.

This program waE written by Capt. T. J. Murphy and Capt. P. C. Reddy and

uses the subroutine POLY written by Prof. M. A. Morgan.

B. PROGRAM LISTING

PROGRAM HCOEF
C

RE \L*8 T, A(0:100), B(0:2),NUM1 (0:100),ATMP(0:100),NUM2(0:100)
REAL*8 SPOLR(30), SPOLI (30),PI, MAG(30), PHASE(30) ,C(30) ,D(30)
INTEGER NPTS, NR, N
COMPLEX*16 SPOL(30), ZPOL(30)
CHARACTER*16 FNAME, PFNAME

P1=3.14159265
WRITE(*,*) 'Enter filename for s-plane poles'
READ(*,120) PFNAME
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OPEN (1, FILE= PFNAME)
READ(1,130) NR
WRITE(*,*) 'Enter time interval'
READ(*,*) T
WRITE(*,*) 'Enter number of points'
READ(-,*) NPTS
DO 10 I= 1,NR
READ(1,*) SPOLR(I)
READ(1 ,*) SPOUI(l)
SPOL(l) =DCMPLX(SPOLR(I),SPOU(I))
ZPOL(I) =CDEXP(DCMPLX(T/FLOAT(NPTS-1 ))*SPOL(I))
write(*,*) 'z-plane pole =',zpol(i)
WRITE(*,*) 'Enter magnitude of pole',l
READ(*,-) MAG(I)
WRITE(*,*) 'Enter phase (in degrees) of pole',I
READ(*,*) PHASE(I)
PHASE(I) =0.0
MAG (I)= 1. 0

C CONVERT MAG AND PHASE TO RECTANGULAR COORD
C(I)=MAG(I)*COS(PHASE(l))
D(I) = MAG (1)*SIN (PHASE (1))

10 CONTINUE
A()1.0

A(1 )=-2.0*REAL(ZPOL(1))
A(2 = (REAL(ZPOL(1 )))**2+ (AIMAG(ZPOL(1 )))**2
NUMi (0)=2.0*C(1)
NUMI (1) =2.0*(REAL(ZPOL(1 ))*C(1 )+AIMAG(ZPOL(1 ))*D(1))
NUMI (2)= 0.0
N=2
DO 15 I=2,NR
NUM2(0)=2.0*C(I)
NUM2(1 ) =2.0*(REAL(ZPOL(l))-C(I) +AIMAG(ZPOL(l))*D(I))
NUM2(2) =0.0
B(0) = 1.0
B(1 ) = -2.0*REAL(ZPOL(I))
B(2) = (REAL(ZPOL(l)))**2+ (AIMAG(ZPOL(I)))**2
DO 17 K=0,N
ATMP(K) =A(K)

17 CONTINUE
C CALCULATE NEW DENOMINATOR

CALL POLY(A,B,N)
C CALCULATE NEW NUMERATOR

N=N-2
CALL POLY(NUM1,B3,N)
N=N-2
CALL POLY(ATMP,NUM2,N)
DO 18 L=0,N
NUMi (L)=NUM1 (L)+ATMP(L)

18 CONTINUE
15 CONTINUE
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WRITE(*,*) 'Enter name of denominator coefficient output file'
READ(*,120) FNAME
OPEN (3, FILE= FNAME)
WRrrE(3,130) N
DO 20 I=1,N
WRITE(3,-) A(l)

20 CONTINUE
CLOSE(3)
WRITE(*,*) 'Enter name of numerator coefficient output file'
READ(*,120) FNAME
OPEN(3,FILE=FNAME)
WRITE(3,130) N
DO 21 l=O,N
WRITE(3,*) NUMi (I)

21 CONTINUE
CLOSE(3)

110 FORMAT(E16.10)
120 FOR MAT(A)
130 FORMAT(15)

END
C

SUBROUTINE POLY(A,B,N)
C
C Multiplying f{B(0)z**2 + B(1)*z + B(2)} x
C {A(0)z**N + A(1)*z**(N-1) + A(2)*z**(N-2) + + A(N)})
C C(0)z**(N+2) + C(1)*z**(N+1) + C(2)*z**N + + C(N+2)
C
C Computing C(n) coefficients and storing in A(n) while
C incrementing N --> N + 2
C

REAL*8A(:0)(0)C(:1)
C A(0)=1.0
C Initialize on first call to routine
C IF(N.GE.2) GO TO 11
C N=2
C A(1)=B(1)
C A(2)=B(2)
C GOTO44
11 C(0)=B(0)*A(0)

C(1) =B(0) *A(1 ) +B(1) *A(0)
DO 22 1=2,N

22 C(l)=B(0)*A(l)+A(1.1)*B(1) +A(l-2)*B(2)
C(N+ 1) =A(N) *B(1 )+A(N-1)*B(2)
C(N +2) =A(N) *B (2)
N=N+2
DO 33 I=0,N

33 A(l)=C(l)
44 CONTINUE

RETURN
END
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APPENDIX C. ARMA SIGNAL GENERATOR

A. PROGRAM DESCRIPTION

This programs generates the time response of an ARMA system via the

equation

k=N k=L

y(n) = ay(n-k) + E bkx(n-k) (C.1)
k=1 k=O

where x(n) is the input excitation record, ak and bk are the coefficients determined

by the program in Appendix B, and y(n) is the output data record.

This program was written by Prof. M. A. Morgan.

B. PROGRAM LISTING

Program ARMA2
C
C Computing y[n] response for N-th order ARMA filter due to x[n]
C input, with coefficients:
C
C [IR a(k) for k=l,N
C FIR b(k) for k=0,L
C
C by M.A. Morgan 5/23/90
C

REAL*8 x(0:2047),y(0:2047),a(1:30),b(0:32)
CHARACTER*64 TITLE,TITL
CHARACTER*16 FNAME

C Entering D.E. Coefficients
WRITE(*,*) 'Enter Filename For Recursive a(k):'
WRITE(*,*) 'Use 0 for FIR Filter'
READ(*,100) FNAME
IF(FNAME.EQ.'0') GO TO 15
OPEN(2,FILE=FNAME)

C Assuming that a(k) are reversed polarity in file.
READ(2,110) N
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write(*,*) 'Write '.-, a(k):'
DOll1 k=1,N
READ(2,*) a(k)
a(k) =-a(k)

write(*,*) k,a(k)
11 CONTINUE

CLOSE(2)
15 CONTINUE

WRITE(*,*) 'Enter Filename for Non-Recursive b(k):'
READ(*,100) FNAME
OPEN (2,FILE =FNAME)
READ(2,110) L
write'*,*) 'Write k, b(k):'
DO 22 k=0,L
READ(2,*) b(k)
write(*,*) k,b(k)

22 CONTINUE
CLOSE(2)
WRITE(*,*) 'Enter Filoname for x[n] Plot File:'
READ(*,100) FNAE
OPEN (2,FILE =FNAME)
READ(2,100) TITL
READ(2,1 10) NX
READ(2,120) XQ
READ(2,120) XQ
write(*,*) 'Write m, x(m):'
DO 24 m=0,NX-1
READ(2,120) x(m)
write(*,*) m,x(m)

24 CONTINUE
CLOSE(2)

C Setting up Plot File for y[nJ
WRITE(*,*) 'Enter Number of Points: (.1e. 2048)'
READ(*,*) NY
WRITE (*,'*) 'Enter time interval (nanoseconds)'
READ(*,*) Tmax
Tmin=0.0
WRITE(*,*) 'Enter filename for y[n] response output'
READ(-,100) FNAME
TITLE= 'ARMA Filter y[n] Response'
OPEN (1, FILE= FNAME)
WRITE(1 ,100) TITLE
WRITE (1, 110) NY
'NRITE(1 ,1 20) Tmin
WRITE(1,120) Tmax

C Initializing then iterating to form y~m]
y(O)=b(0)*x(O)
wrfte(1,120) y(0)
DO 44 m=1,NY-1
y(m)=0.0
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Lmax=MIN(m,L)
DO 27 k=O,Lr'nax

27 y(m) =y(m) +b(k)*x(m-k)
Nmax=MIN(m,N)
DO 33 k=1,Nmax

33 y(m) =y(m)+a(k)*y(m-k)
wrfte(*,*) y(m)
WRITE(1,120) y(m)

44 CONTINUE
WRITE(*,*) 'Thats All Folks!'
CLOSE(1)

100 FORMAT(A)
110 FOR MAT(15)
120 FORMAT(E12.6)

STOP
END

88



APPENDIX D. THlE CADZOW-SOLOMON POLE EXTRACTION ALGORITHM

A. PROGRAM DESCRIPTrION

This program implements the Cadzow-Solomon pole finding algorithm as

described in Chapter HI. The program was written by Capt. P.D. Larisoa with

modifications by Capt. T.J. Murphy. The system order estimating subroutine is

included in the next appendix. For information on the remaining subroutines see [4].

B. PROGRAM LISTING

$L ARGE
INTEGER I,J,KL/1 /,N,IERR,kd,m,MN,magpol(2),NSTRTPT,DELTAY
INTEGER I ER, NCAUS, NMENU, NZPOL, INSTRTPT
INTEGER*2 KdPLT
REAL tB A(70,70) ,W(70) ,U (70,70) ,V(70,70) ,RV1 (70)
REAL*8 VS(70,70) ,UT(70,70) ,icomp(70) ,VT(70,70)
REAL*8 AINV(70,70),dist(20) ,X(70) ,US(70,70)
REAL*18 XP(70),B(7C),SIGMA(70,70),SIG(70,70)
REAL*8 COF(70)
REAL-8 ROOTR(70) ,ROOTI (70) ,RRTMAX,IRTMAX, RRTMIN,IRTMI N
REAL CRTR(70),CRTI (70), NRTR (70), NRTI (70), MAG
REAL*8 D(1 024),avg,machep/1 .OE-1 6/,Dy(1 40),Dx(1 024)
REAL*8 avgdist/O.OdO/,distmin/1 000.dQ/,dminhi 000.0c0/
COMPLEX* 16 S(70),truzpoI(20), pdmmn(1 0)
LOGICAL MATU/.TRUE./,MATV/.TRUE./,CAUSAL/.TRUE./,LONG/.TRUE./
LOGICAL DSET/.FALSE./,NUFILE!.TRUE./
CHARACTER TITLE* 1 6,header*64,yn* 1 ,dc* 1 ,TITLER* I 6,TITLEI* 16
CHARACTER TITL* 16,TITLD* 16, RPOL* 16,IPOL* 16,AUTORD* 1

14 IF (OSET) CLOSE(10)
NOVERLAY=0
OPEN (1 0,FILE ='PLOT')
IF (DSET) GO TO 232
WRITE (,)'Welcome to signal processing using the'
WRITE (,)'Cadzow-Solomon method'
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WRITE(,*
WRITE (*)'Do you want'
WRITE(,*
WRITE (** 1. The long version for beginners'
WRITE (,)'2. The short version for pros'
WRITE (**)

118 WRITE ()'Please enter 1 or 2'
READ (*)N
IF (N .EQ. 1) THEN
LONG= .TRUE.
ELSEIF (N .EQ. 2) THEN
LONG= .FALSE.
ELSE
GO TO 118
ENDIF
WRITE (*,*) 'Enter name of data file with s-plane poles'
READ( t ,100) TITL
OPEN (9, FILE =TITL)
READ(9,*) NZPOL
DO 77 1=1,NZPOL
READ(9,*) ICOMP(1)
READ(9,-) ICOMP(2)
TRUZPOL(I) =CDEXP(DCMPLX(20.OdQ/1 023.OdO)*IDCMPLX(ICOMP(1 ),ICOMP(2))

WRITE(*,*) 'True z-piane pole #',I
WRITE(*,-) TR1UZPOL(Q)

77 CONTINUE
CLOSE(9)
WRITE (*,*) 'Session will begin with entry of parameters needed fo

+ r processing'
WRITE (*,*)
WRITE (,)'Do you want to enter parameters from'
WRITE (*~
WRITE (,)'1. The keyboard'
WRITE (,)'2. A previously created file of parameters'
WRITE (**

19 WRITE (** Please enter 1 or 2'
READ (*)N
IF (N .EQ. 1) THEN
GO TO 8
ELSEIF (N .EQ. 2) THEN

13 WRITE (*,*) 'Enter title of file containing parameters'
READ (*,100J) TITL
OPEN (1, FILE =TITL)
READ(1,100) TITLE
READ(1,110) NPTS
READ(1,110) NRT
READ(1,1 10) Kd
READ(1,110) M
READ(1. 110) DELTAY
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READ(1 .110) NSTRTPT
READ(1, 110) NCAUS
READ(1,100) TITLD
READ(1, 110) NDPTS
READ(1, 110) Kn
READ(1 .110) INSTRTPT
CLOSE(1)
GO TO 232
ELSE
GO TO 19
ENDIF
WRITE(*)

8 WRITF (,)'Enter titlervf c ztig excitation waveform'
READ (*,100) TITLD
OPEN (8,FILE =TITLD)
READ(8,100) HEADER
READ(8,1 10) N
IF (N .GT. 1024) THEN
WRITE (*)'Number of points in data file exceeds the dimension'
WRITE (*)'of the array used in the program to store the file'
STOP
ENDIF
CLOSE(8)
IF ((N .GE. NDPTS) .AND. DSET) THEN
NDPTS =N
GO TO 232
ENDIF
NDPTS=N

9 WRITE (*,*) 'Enter estimated feed forward order'
IF (DSET) THEN
MAXIMUM =NDPTS-M
IF (MAXIMUM .GT. M-Kd-1) MAXIMUM=M-Kd-1
IF (MAXIMUM .GT. NDPTS-1i'4STRTPT-Kn-M+1) THEN
MAXIMUM= NDPTS-INSTRTPT-Kn-M+I1
ENDIF
ELSE
MAXIMUM=66
ENDIF
IF (MAXIMUM .EQ. 1) THEN
WRITE (*,*) 'The estimated feed forward order can only be 1'
IF (DSET) GO TO 232
GO TO 10
ELSE
IF (DSET) THEN
WRITE (*)'Given the other parameters chosen thus far,'
ENDIF

411 WRITE (')'the order may range from 1'
WRITE (,)toMAXIMUM
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READ (*,*) Kn
IF (Kn .GE. 1 .AND. Kn .LE. MAXIMUM) THEN
IF (DSET) GO TO 232
GO TO 10
ENDIF
WRITE (*,*) 'Enter estimated order again'
WRITE (*,*)
GO TO 411
ENDIF
IF (DSET) GO TO 232

10 INSTRTPT= 1
412 IF (INSTRTPT+Kn+M-1 .GT. NDPTS) THEN

INSTRTPT= INSTRTPT-1
ELSE
INSTRTPT= INSTRTPT+ 1
GO TO 412
ENDIF
MSTRT= INSTRTPT

IF (INSTRTPT .EQ. 1) THEN
WRITE (*,*) 'The first point can only be 1'
GO TO 232
ELSE
WRITE (*,*) 'Enter first point in waveform file to be processed'

413 WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*) 'the starting point may range from 1'
WRITE (*,*)' to',MSTRT
READ (*,*) INSTRTPT
IF (INSTRTPT .GE. 1 .AND. INSTRTPT .LE. MSTRT) THEN
IF (DSET) GO TO 232
GO TO 1
ENDIF
WRITE (*,*) 'Enter starting point again'
WRITE (**)
GO TO 413
ENDIF
IF (DSET) GO TO 232

IF (.NOT. DSET) NUFILE=.TRUE.
IF (.NOT. DSET) NSTRTPT=1
WRITE (*,*) 'Enter title of data file to be read'
READ (*, 100) TITLE
OPEN(12, FILE =TITLE)
READ(12,100) HEADER
READ(12,110) NPTS
IF (NPTS .GT. 1024) THEN
WRITE (*,*) 'Number of points in data file exceeds the dimension'
WRITE (*,*) 'of the array used in the program to store the file'
STOP
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ENDIF
CLOSE(1 2)

IF (NUFILE) THEN
GO TO 3
ELSFIF (NSTRTPT+(Kd+M.1)*DELTAY .LE. NPTS) THEN
GO TO 232
ELSE
GO TO 6
ENDIF

3 IF (NUFILE) THEN
MAXIMUM=69-Kn-I
IF (MAXIMUM .GT. NPTS-69) MAXIMUM=NPTS-69
MIN=2
IF (MIN .EQ. MAXIMUM) THEN
Kd=MIN
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*)'Kd muist be ',MIN
GO TO 4
ENDIF

WRITE (*)'Enter Kd, > = the estimated order of the system'
WRITE (*)'Given the other parameters chosen thus far,'

34 WRITE (*)'Kd may range from',MIN
WRITE (**~to',MAXIMUM
READ (*)Kd
IF (Kd .GE. MIN .AND. Kd .LE. MAXIMUM) GO TO 4
GO TO 34

ELSEIF (DSETI) THEN
MAX'MUM =M-Kn-I
IF (MAXIMUM 3T. NPTS-M) MAIMUM=NPTS-M
MIN=2
N=MAXIMUM

17 IF (NSTRTPT+(N+M-1)*DELTAY .LE. NPTS) THEN
MAXIMUM=N
IF (MIN .EQ. MAXIMUM) THEN
Kd =MIN

GO TO 232
ELSEIF (MAXIMUM XLT. MIN) THEN
DELTAY=1
IF (1 +(2+M-1)*DELTAY .LE. NPTS) THEN
Kd =2
GO TO 137
ENDIF
WRITE (*,*) 'Error. Kd must be less than 2'
Kd =2
GO TO 232
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ENDIF
WRITE (*)'Given the other parameters chosen thus far,'

22 WRITE (,)'Kd may range from ',MIN
WRITE (,)to',MAXIMUM
WRITE (,)'Enter Kd'
READ (,)Kd
IF (Kd .GE. MIN .AND. Kd .LE. MAXIMUM) GO TO 232
GO TO 22
ELSE
N=N-1
GO TO 17
ENDIF
ENDIF

C Determine M
4 IF (NUFILE) THEN

WRITE (*,*) 'Enter M, the row dimension of the data matrix'
IF (.NOT. DSET .AND. LONG) THEN
WRITE (*,*)
WRITE (,)'Note: Kd+M points in ',title
WRITE (,)' will be processed
WRITE(*)
ENDIF

320 WRITE (,)'M may rangie frc:n',Kd
IF (NPTS-Kd .GT. 69) THEN
WRITE !0* 't 69'
ELSE
WRITE (*)'to',NPTS-Kd
ENDIF
READ (*)M
IF (M .GT. 69) THEN
WRITE (*,*) 'M must also be le", than 70'
GO TO 320
ELSEIF (M .LT. Kd) THEN
WRITE (*,*) 'M must be greater than or equal to Kd, Kd= ',Kd
GO TO 320
ELSEIF (Kd+M .GT. NPTS) THEN
WRITE (,)'Kd+M must be less than or equal to',NPTS,','
WRITE (,)'the number of Luata points iri',TITLE
WRITE (*
GO TO 320
ENDIF

C Begin part for data already set
ELSE
N =Kd

122 IF (NSTRTPT+(Kd+N-1)*DELTAY .LE. NPTS) THEN
N=N+1
GO TO122 10
ELSE
N=N-1
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ENDIF
IF (N .EQ. Kd) THEN
WRITE (*,*) 'M must equal',Kd
M =Kd
GO TO 232
ENDIF
MAXIMUM=N
IF (MAXIMUM .GT. 69) MAXIMUM=69
IF (Kd+Kn+1 .EQ. MAXIMUM) THEN
M =Kd+ Kn+ 1
GO TO 232
ELSEIF (Kd+Kn+1 .GT. MAXIMUM) THEN
WRITE (*,*) 'Kd must be reduced'
GO TO 3
ELSE
MIN=Kd +Kn+ 1
ENDIF
IF (MIN .LT. Kn+Kd+1) MIN=Kn+Kd+1

18 WRITE (,)'M may range from',MIN
WRITE (*,*)' to't4AXIMUM
WRITE (,)'Enter M'
READ (,)M
IF (M .GE. MIN .AND. M .LE. MAXIMUM) GO TO 232
GO TO 18
ENDIF

c Determine DELTAY
137 IF (.NOT. NUFILE) GO TO 232
5 N=1
99 IF (NSTRTPT+N*(Kd+M-1) .LE. NPTS) THEN

N=N+1
GO TO 99
ELSE
N=N-1
ENDIF
IF (N .EO. 1) THEN
WRITE (*)'Given the other parameters chosen thus far,'
WRITE (,)'Spacing can only be 1'
DELTAY= 1
IF (NUFILE) THEN
GO TO 577
ELSE
GO TO 232
ENDIF
ENDIF
IF (.NOT. DSET .AND. LONG) THEN
WRITE (1'Enter spacing between the ',Kd+M
WRITE (')'data points of ',ITLE
WRITE (,)'to be processed'
WRITE (*
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WRITE (4,4) 'If, for example, one is chosen, then ',Kd+M
WRITE (*,*) 'consecutive points in ',TITLE
WRITE ( ,) 'will be processed'
WRITE (*,*)
ELSE
WRITE (*,*) 'Enter spacing'
WRITE (**)
ENDIF

199 WRITE (*,) 'Spacing may range from 1
WRITE (4,,) , to',N
READ (*,*) DELTAY
IF (DELTAY .GE. 1 .AND. DELTAY .LE. N) THEN
IF (NUFILE) THEN
GO TO 577
ELSE
GO TO 232
ENDIF
ELSE
GO TO 199
ENDIF

577 WRITE (*,*) 'Do you wish to adjust eigenvalues? (y/n)'
READ (*,150) YN
IF (YN .EQ. 'N' .OR. YN .EQ. 'n') THEN
IF (NUFILE) GO TO 6
GO TO 232
ENDIF
IF (YN .NE. 'Y' .AND. YN .NE. 'y') GO TO 577

2 WRITE (*,*) 'Discard or compensate eigenvalues? (d/c)'
READ *.150) DC
IF (DC .EQ. 'D' .OR. DC .EQ. 'd') GO 10 73
IF (DC .NE. 'C' .AND. DC .NE. 'c') GO TO 2

73 WRITE (*,*) 'Do you want computer estimation of system order (y/n)
+I

READ (*,150) AUTORD
IF (AUTORD .EQ. 'Y' .OR. AUTORD .EQ- 'y') THEN
IF (NUFILE) GO TO 6
GO TO 232
ENDIF
IF (AUTORD .NE. 'N' .AND. AUTORD .NE. 'n') GO TO 73
WRITE (*,*) 'Enter estimate of the actual order of the system'
WRITE (**)..
IF (LONG) THEN
WRITE (*,*) 'This estimate will be used to determine the'
WRITE (*,*) 'number of eigenvalues compensated or discarded'
ENDIF

71 WRITE (.,4) 'the estimate may range from 2'
WRITE (*,*) to',Kd+Kn+l
READ (**) NRT
IF (NRT .GT. Kd+Kn+1 .OR. NRT .LT. 2) THEN
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GO TO 71
ELSEIF (.NOT. NUFILE) THEN
GO TO 232
ENDIF

6 NSTRTPT=1
74 IF (NSTRTPT+(Kd+M-1)*DELTAY .LE. NPTS) THEN

NSTRTPT= NSTRTPT+ 1
GO TO 74
ELSE
NSTRTPT= NSTRTPT-1
ENDIF
IF (NSTRTPT .EQ. 1) THEN
WRITE (*,*) 'Given the other parameters chosen thus far,'
WRITE (*,*) 'the starting point for processing the data'
WRITE (*,*) 'must be the first point in the data file'
GO TO 232
ENDIF
WRITE (*,*) 'Enter desired starting point in data file'
IF (.NOT. DSET .AND. LONG) THEN
WRITE (*,*) '1 indicates the first point in the data file
ENDIF
WRITE (**)
WRITE (*,*) 'Given the other parameters chosen thus far,'

747 WRITE (*,*) 'the starting point may range from 1'
WRITE (*,*) to',NSTRTPT
PEAD (**) N
0: (N GE. 1 .AND. N .LE. NSTRTPT) THEN
NSTRTPT= N
ELSE
WRITE (*,* !-' r u--king point again'
WRITE (*,
GO TO 74,
ENDIF
IF (.NOT. NUFILE) GO TO 232

7 IF (DSET) THEN
IF (NCAUS .EQ. 1) THEN
NCAUS=2
GO TO 232
ELSE
NCAUS= 1
GO TO 232
ENDIF
ENDIF
WRITE (*,*) 'Do you want the data matrix arrangement to be'
WRITE (*,)''
WRITE (,*) '1. Causal'
WRITE ( ,) '2. Non-causal'
WRITE (**) '

97



181 Whi ~rE (')'Please enter 1 or 2'
READ ( )NCAUS
IF (NCAUS .EQ. 1) THEN
CAUSAL= .TRUE.
ELSEIF (NCAUS .EQ. 2) THEN
CAUSAL= .FALSE.
ELSE
GO TO 181
ENDIF
GO TO 232

12 IF (ALJTORD .EQ. 'YOR. AUTORD.EQ. y') THEN
IF (NUFILE) THEN
WRITE(*,*) 'System order must be calculated first'
GO TO 232
ENDIF
ENDIF
WRITE (*,*) 'Enter title of file to contain parameters'
READ (*,100) TITL
OPEN (1, FILE =TITL)
WRITE(1,100) TITLE
WRITE(1,110) NPTS
WRITE (1, 110) NRT
WRITE(1,110) Kd
WRITE (1, 110) M
WRITE(1 , 110) DELTAY
WRITE(1,1 110) NSTRTPT
WRITE(1 ,1 10) NCAUS
WRITE (1,100) TITLD
WRITE(1,1 110) NDPTS
WRITE(1,110) Kn
WRITE(1 ,1 10) INSTRTPT
CLOSE(1)
IF (DSET) GO TO 232

15 IF (DSET) THEN
CLOSE(2)
CLOSE(3)
CALL SUBPLT(NOVERLAY,MAG)
ENDIF

232 DSET=,TRUE.
NUFILE=.FALSE.
WRITE(**)''
WRITE(*,*) '1. Data file to be processed ',T

+ iTLE
WRITE(*,*) ' Number of data points in data file ',NPTS
IF(AUTORD .EQ. 'YOR. AUTORD.EQ. 'y') THEN
WRITE(*,*) '2. Automated system order determination'
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ELSE
WRITE(*,*) '2. Estimated order of the system ',NRT
ENDIF
WRITE(*,*) '3. Kd, the number of columns in the data matrix',Kd
WRITE(*,*) '4. M, the number of rows in the data matrix',M
WRITE(*,*) '5. Spacing between data points being processed ',DELTA

+ Y

WRITE(*,*) '6. First point in the data file to be processed',NSTRT
+ PT

WRITE(*,*) ' Last point in the data file to be processed',NSTRT
+ PT+Kd+M-1

IF (NCAUS .EQ. 1) THEN
WRITE(*,*) '7. Data matrix arrangement for processing CA

+ USAL
ELSE
WRITE(*,*) '7. Data matrix arrangement for processing NON-CA

+ USAL
ENDIF
WRITE(,*)''

WRITE(*,*) '8. File containing excitation waveform ',T
+ ITLD

WRITE(*,*) ' Number of data points in above file ',NDPTS
WRITE(*,*) '9. Estimated order of the waveform ',Kn

WRITE(*,*) '10. First point in the file to be
WRITE(*,*)' input into the data matrix ',INSTR

+ TPT
WRITE(*,*)''

WRITE(*,*) '11. Begin processing using above settings'
WRITE(*,*) '12. Store parameters 1-10 in a file'
WRITE(*,*) '13. Retrieve parameters 1-10 from a previously created

+ file'
WRITE(*,*) '14. Reset overlays'
WRITE(*,*) '15. Re-plot overlays'
WRITE(*,*) '16. End this session of Cadzow-Solomon signal processi

+ ng'
WRITE(*,*)''
WRITE(*,*) 'Enter an integer from 1 to 16 to make changes as often

+ as you desire'
200 READ (*,*) NMENU

IF (NMENU .LT. 1 OR. NMENU .GT. 16) THEN
WRITE(*,*) 'Enter an integer from 1 to 16'
GO TO 200
ENDIF

GO TO (1,2,3,4,5,6,7,8.9,10,11,12,13,14,15,16),NMENU

11 OPEN(12,FILE=TITLE)
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READ(12,100) HEADER
READ(12,11O) NPTS
READ(12,120) XO
READ(12,120) XQ
DO 2337 I=1,NPTS
READ(12,120) D(I)

2337 CONTINUE
CLOSE(1 2)

OPEN(8,FILE=TTLD)
READ(8,100) HEADER
READ(8,1110) NDPTS
READ(8,120) XQ
READ(8,120) XQ
DO 414 l=1,NDPTS
READ(8,120) Dx(l)

414 CONTINUE
CLOSE(8)

KdPLT= Kd
WRITE(*,*) 'enter title of file to contain real part of poles'
READ(*, 100) TITLER
OPEN (2,file=TITLER)

WRITE(*, *)'enter title of file to contain imaginary part of poles'
READ(-, 100) TITL EI
OPEN (3,file=TITLEI)

WRITE(1 0,130) (KdPLT)
WRITE(1 0,100) TITLER
WRITE (10, 100) TITLE I

130 FORMAT(12)

MN=MAX(M,Kd+Kn+l)

100 FORMAT(A)
110 FOR MAT(15)
120 FORMAT(E12.6)
150 FORMAT(A1)

DO 39 I=1,Kd+M
Dy(I) =D((I-1 )*DELTAY+ NSTRTPT)

39 CONTINUE

237 DO0227 1=1,M
DO 127 J=1,Kd+Kn+l
A(I,J) =Dy(l +J + 1-IJ)
IF (J .GE. Kd+1) A(I,J)=Dx(I+J+INSTRTPT-2-Kd)

127 CONTINUE
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227 CONTINUE

B(1 ) =Dy(1)

DO 449 1=2,M

449 CONINUE

N =Kd +Kn+ 1

CALL SVD(MACHEP,M,N,MN,A,W,MATU,U,MATV,V,IERR,RV1)

C ANY ERRORS?
IF (IERR .GT. 0.0) THEN
WRITE (*,*) 'Error in singular value number ',IERR,STOP
ENDIF
IF (YN .EQ. WN) GO TO 2227

DO 1127 I=1,Kd+Kn+1
XP(l) =0.0

1127 CONTINUE

c COMPENSATE EIGENVALUES
c ORDER SINGULAR VALUES

XP(1) =W(1)
DO 119 1=2,Kd+Kn+1
DO 1179 J=1,I
IF (W(I) .GT. XP(J)) then
DO 123 K=1+1,J,-1

123 XP (K) =XP (K- 1)
XP(J) =W(I)
GO TO 119
ENDIF

1179 CONTINUE
XP(I+1)=W(I)

119 CONTINUE
c XP( ) now contains ordered singular values: xp(1) is the largest

IF (AUTORD .EQ. 'Y".OR. AUTORD .EQ. 'y') CALL FNDAIC(Kd,xp~m,nrt)
IF (DC .EQ. 'D') THEN
DO 112 J=NRT+1,Kd+Kn+1

112 W(D=(0.0)
ELSE

c COMPENSATE
AVG=0.0
DO I1l J=NRT+1,Kd+Kn+1
AVG=AVG+XPO)**2

111 CONTINUE
IF (Kd+Kn+ 1 GT. NRT) AVG=AVG/DBLE(FLOAT(Kd+Kn+ 1-NRT))
DO 132 J=1,Kd+Kn+1

101



DO 177 K=1,Kd+Kn+1
IF (W(J) .EQ. XP(K) ) THEN
IF (K .GT. NRT) THEN
W(J)=O.O
ELSE
W(J) = DSQRT(DABS(W(J) -W(J) -AVG))
ENDIF
GO TO 132
ENDIF

177 CONTINUE
132 CONTINUE

ENDIF

c Calculate UT, the transpose of U, an M x M matrix
2227 DO 500 1=1,M

DO 600 J=1,M
UT(I,J)=(U(J,I))

600 CONTINUE
500 CONTINUE

c Form SIGMA+ (Kd+Kn+1 x M)
DO 70 I=1,Kd+Kn+1
DO 80 J=1,M
SIGMA(I,J)=0.0
IF (I .EQ. J .AND. W(J) .NE. 0.0) THEN
SIGMA(I,J) = 1 .ODO/Woj)
ELSE
SIGMA(I,J) =0.ODO
ENDIF

80 CONTINUE
70 CONTINUE

c Form SIGMA (M x Kd+Kn+1)
DO 700 1=1,M
DO 800 J=1,Kd+Kn+1
SIG(I,J) =0.0
IF (I .EQ. J) SIG(IJ)=W(J)

800 CONTINUE
700 CONTINUE

c Calculate matrix multiplication of V x SIGMA+ =VS, where
c V=Kd+Kn+lxKd+Kn+l,SIGMA+=Kd+Kn+lxMVS=Kd+Kn+1xM

CALL MXMUL(V,SIGMA,Kd+Kn+1 ,Kd+Kri+1,M,VS)

c Caiculate matrix multiplication of VS x UT=AINV, where
c VS=Kd+Kn+lxm,UT=mxmAINV=Kd+Kn+lxm

CALL MXMUL(VS,UT,Kd+Kn+1 ,M,M,AINV)
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c Calcuiate matrix multiplication of AINV x B, where
c AINV=Kd+Kn+lxm,B=mxl,XP=Kd+Kn+lxl

CALL MXMUL(AINV,B,Kd+Kn+1 ,M,LXP)

c Compute autoregressive coefficients from prediction coefficients
IF (XP(Kd) .EQ. 0.0) THEN
WRITE (*,*) 'ERROR, avoiding division by zero'
STOP
ELSE
B(Kd) = 1.ODOIXP(Kd)
ENDIF
DO 347 I=2,Kd
b(i- ) = -b(Kd) *xp(Kd..i+ 1)

347 CONTINUE
c rearrange prediction coefficients for call to POLRT

DO 357 I=1,Kd
XQI)=-B(Kd-I+1)
IF (NCAUS .EQ. 1) X(I)=-XP(Kd-I+1)
WRITE (*,*) l,XP(i),X(i)

357 CONTINUE
X(Kd+1) =1.0

CALL POLRT(X.COF,KD,ROOTR,ROOTI,IER)

IF (IER .NE. 0) WRITE (*,*) 'ERROR with poirt, ier=',IER,STOP

DO 777 I=1,Kd
WRITE (2,120) ROOTR(Q)
WRITE(3, 120) ROOTI(I)
S(I) =DCMPLX(ROOTR(I) ,ROOTI (I))

777 CONTINUE

MAGPOL(1)=0
DO 647 I=1,Kd
IF (CDABS(S(I)) .GE. 1 .ODO) MAGPOL(1 )=magpol(1 )+ 1

647 continue

WRITE(*,*) '# of poles with magnitude >= 1',magpol(ij)
WRITE (*,*) 'HIT ANY KEY TO CONTINUE'
READ (-*,100) HEADER

NQVERLAY=NOVERLAY+ 1
CLOSE(2)
CLOSE(3)
CALL SUBPLT(NOVERLAY,MAG)
DO 45 1I= 1NZPOL
DIST(I) =CDABS(TRUZPOL(I)-S(1))
PDMIN(I)=S(l)

45 CONTINUE
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DO 400 I=2,Kd
DO 401 J=1,NZPOL
IF (CDABS(TRUZPOL(J)-S(I)) .LT. DIST(J) )THEN
PDMIN(J) =S(l)
DIST(J) =CDABS(TRUZPOL(J)-S())
ENDIF

401 CONTINUE
400 CONTINUE

AVGDIST=O0
J=O
DO 402 I=1,NZPOL
J=J+1
IF(J .EQ. 4) then
WRITE(*,*) 'hit any key to continue'
READ(*,100) HEADER
J=O
ENDIF
WRITE(*,*) True z-pole ',TRUZPOL(I)
WRITE(*,*) 'Obtained z-pole',PDMIN(I)
WRITE(*,*) 'Distance from true pole',DISI k)
AVGDIST=AVGDIST+ DIST(I)

402 CONTINUE
IF (NZPOL .EQ. 0) GO TO 404
WRITE(*,*) 'Average distance from true poles',AVGDIST/NZPOL
WRITE(*,*) '

404 WRITE(*,*) 'Poles with magnitude less than one'
WRITE(-,-)
J=0
K=O
WRITE(*,*) 'Enter file to contain real poles'
READ(*,100) RPOL
WRITE(*,*) 'Enter file to contain imaginary poles'
READ(*,100) IPOL
OPEN(20,FILE= RPOL)
OPEN(21, ,FILE= IPOL)
DO 403 I=1,Kd
IF (CDABS(S(I)) .LT. 1.0) THEN
WRITE (* *) S(I),CDABS(S(I))
WRITE (20,120) REAL(S(I))
WRITE (21,120) IMAG(S(I))
J:=J+1
K=K+1
ENDIF
IF (J .EQ. 20) THEN
WRITE (*,*) 'Hit any key to continue'
READ (*,100) HEADER
J=O
ENDIF

403 CONTINUE
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CLOSE(20)
CLOSE(21)
WRITE ' )Poles with magnitude less than one ',K
WRITE (*)'Hit any key to continue'
READ (-,100) HEADER

GO TO 232

16 STOP

END
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APPENDIX E. DETERMINING SYSTEM ORDER

A. SUBROUTINE DESCRIPTION

This subroutine implements the Akaike Information Criterion (AIC) in order

to determine the order of a system. The routine is based on the algorithm as

described in Chapter HI.

B. SUBROUTINE LISTING

SUBROUTINE FNDAIC(Kd,XP,M,NRT)
C
C ESTIMATES SYSTEM ORDER USING AIC CRITERION
C

INTEGER J,Kd,NRT,STQP,M
REAL*8 XP (70),SU M(0: 69), PROD (0: 69),TERM 1 ,AIC,AICM

C
STOP= Kd-1
DO 20 J=0,STOP
SUM(J)=XP(J+1)
PROD(J) =XP(J +1)
DO 30 K= (J +2), Kd
SUM(J) =SUM(J) +XP(K)
PROD (J) = P ROD (J) *XP (K)

30 CONTINUE
TERM1 = ~FLOAT(Kd-J)* FLOAT(Kd + M-1) )*ALOG (1 /(FLOAT(Kd-J)) *SUM (J))
AIC =TERM 1 -FLOAT(Kd + M-1) )*ALOG (PROD (J)) + FLOAT(J*(2* Kd-J))
IF(J .EQ. 0) THEN
AICM=AIC
NRT= 0
ELSEIF(AIC .LT. AIOM) THEN
AICM =AIC
NRT=J
ENDIF

20 CONTINUE
WRITE(*.*) 'SYSTEM ORDER 'NRT
RETURN
END

106



LIST OF REFERENCES

1. C. E. Baum, On the Singularity Expansion Method for the Solution of
Electromagnetic Interaction Problems, Air Force Weapons Laboratory
Interaction Note 88, December 1971.

2. D. L. Moffatt and R. K. Mains, "Detection and discrimination of radar targets,"
IEEE Trans. on Antennas and Propagation, AP-23 May 1975, pp 358-367.

3. Michael A. Morgan, "Singularity expansion representations of fields and
currents in transient scattering," IEEE Trans. on Antennas and Propagation, AP-
23, May 1984, pp. 466-473.

4. Peter D. Larison, "Evaluation of system identification algorithms for aspect-
indepcndent radar target classification," Master's Thesis, Navai Postgraduate
School, Monterey, CA, Dec 1989.

5. E. M. Kennaugh, 'The K-pulse concept," IEEE Trans. on Antennas and
Propagation, AP-29, March 1981 pp. 327-331.

6. James B. Dunavin, "Identification of scatterers based upon annihilation of
complex natural resonances," Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1985,

7. Michael A. Morgan and James B. Dunavin, "Discrimination of scatterers using
natural resonance annihilation," Abstracts of 1986 National Radio Science
Meeting, Philadelphia, PA, June 1986,

8. K. M. Chen, D. P. Nyquist, E. J. Rothwell, L. L. Webb, and B. Drachman,
"Radar target discrimination by convolution of radar returns with extinction-
pulses and single-mode extraction signals," IEEE Trans. on Antennas and
Propagation, AP-34, July 1986, pp. 896-904.

9. E. M. Kennaugh and D. L. Moffatt, 'Transient and impulse response
approximations," Proc. IEEE, 53, August 1965, pp. 893-901.

10. Michael A. Morgan, "Scatterer discrimination based upon natural resonance
annihilation," Journal of Electromagnetic Waves and Applications, 2, 2, 1987, pp.

* 155-176.

107



11. Steven M. Kay and Stanley Lawrence Marple, Jr., "Spectrum Analysis-A
Modern Perspective," Proc. IEEE, 69, November 1981, pp. 1380-1415.

12. Choong Y. Chong, "Investigation of non-linear estimation of natural resonances
in target identification," Master's Thesis, Naval Postgraduate School, Monterey,
CA, December 1983.

13. Ramdas Kumaresan, "Estimating the parameters of exponentially damped or
undamped sinusoidal signals in noise," Ph.D. Dissertation, University of Rhode
Island, Kingston, RI, October 1982.

14. G. H. Golub and C. Reinsch, "Singular value decomposition and least squares
solutions," Numer. Math., 14,1970, pp. 403-420.

15. R. Kumaresan, and D. W. Tufts, "Estimating the parameters of exponentially
damped sinusoids and pole-zero modeling in noise," IEEE Trans. Acoustics,
Speech, and Sig. Proc., December 1982, pp. 833-840.

1. S. A,. Norton, "Radar target classification by natural resonances: signal
processing algorithms," Engineer's Thesis, Naval Postgraduate School,
Monterey, CA, Dec 1989.

17. James A. Cadzow and Otis M. Solomon, Jr., "Algebraic approach to system
identification," IEEE Trans. Acoustics, Speech, and Sig. Proc., AP-29, March 1981
pp. 462-469.

18. Hirotugu Akaike, "A new look at the statistical model identification," IEEE
Trans. on Automatic Control, December 1974, pp. 716-723.

19. John Finney Aurand, "An antenna array processing system for multiple source
bearing estimation," Ph.D. Dissertation, Iowa State University, Ames, IA, 1987.

20. Steven M. Kay, Modem Spectral Estimation Theory & Application, p. 297,
Prentice Hall, Englewood Cliffs, NJ, 1987.

21. Michael A. Morgan, Time-Domain Thin-Wire Integral Equation Program, Naval
Postgraduate School, Monterey, CA, 1989.

22. Norman J. Walsh, "Bandwidth and signal to noise ratio enhancement of the
NPS transient scattering laboratory," Master's Thesis, Naval Postgraduate
School, Monterey, CA, Dec 1989.

23. Peter C. Reddy, "Radar target classification by natural resonances: system
analysis," Master's Thesis, Naval Postgraduate School, Monterey, CA, Sept. 1990.

108



24. James A. Cadzow, "Signal enhancement: a useful signal processing tool,"ASSP
Workshop on Spectrum Estimation and Modeling, pp. 162-167, IEEE Publishing
Services, New York, IEEE Catalog No. 88CH2633-6, 1988.

109



INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943.-5002

3. Defense Logistic Studies Information Exchange 1
U.S. Army Logistics Management College
Fort Lee, Virginia 23801-6043

4. Department Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

5. Professor Michael A. Morgan, Code EC/Mw 5
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

6. Professor Ralph Hippenstiel, Code EC/Hi 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5002

7. Commandant of the Marine Corps 1
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20380-0001

8. Dr. John N. Entzminger 1
Director, Tactical Technology Office
Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virginia 22209

110


